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Abstract. A non-linear thermodynamic model describing heat pulse propagation in dielectric
crystals at low temperature is proposed. This work is a generalization of those of Cattaneo
and of Guyer and Krumhansl, and is complementary to an earlier paper (Lebon G, Torrisi M
and Valenti A 1995J. Phys.: Condens. Matter7 1461), which was mainly devoted to a linear
approach. The model is based on extended irreversible thermodynamics, and uses as field
variables the temperature, the heat flux, and the flux of the heat flux. Unlike the simple phonon
gas model, the present formalism is compatible with the experimental observation that second
sound is temperature dependent. In this paper, explicit expressions for the internal energy and
velocity of propagation of weak discontinuities are determined. By making use of experimental
data for NaF and Bi, the values of the relevant parameters have been evaluated.

1. Introduction

In phonon hydrodynamics, there is a well known model due to Guyer and Krumhansl
[1] which allows a successful description of heat pulse propagation in crystals at low
temperature. Most of the recent experimental observations on second sound in dielectric
crystals like NaF and Bi were based on this model. However, the Guyer–Krumhansl
description predicts that within the limit of high frequencies the phase velocity is infinite;
in other words, it implies that after application of a disturbance the latter will be felt
instantaneously everywhere in space. In that respect, the Guyer–Krumhansl equation
presents the same drawback as the classical Fourier law relating the heat flux to the
temperature gradient. Indeed when the Fourier equation is replaced in the energy
balance law, one finds that the partial differential equation governing the behaviour of the
temperature is a parabolic one; the same observation remains true for the Guyer–Krumhansl
equation as observed by many authors in the past [2, 3].

Our objective in the present paper is to propose an extension of the Guyer–Krumhansl
equation which circumvents the problem of propagation of signals with an infinite
velocity. This task will be achieved by working in the framework of extended irreversible
thermodynamics [4]. In this theory the space of variables is enlarged by including the
dissipative fluxes (like heat flux, the flux of momentum, and the flux of mass) as independent
variables in addition to the classical variables (like energy or temperature, mass, and
momentum). EIT has proved particularly useful for describing high-frequency and short-
wavelength phenomena; it is also well adapted for studying the behaviour of viscoelastic
fluids and polymers. A notable domain of application of EIT is that of relativity. In this
article, heat propagation in samples at rest is considered, so that the only relevant variables
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are temperature and heat flux. However, it is well known from the early work on EIT that
the choice of these two variables only allows one to recover Cattaneo’s equation, which is,
in Cartesian coordinates,

τ ∂tqi + qi = −λT,i . (1)

The notation is classical:τ is a relaxation time,qi the ith component of the heat flux
vector,λ the heat conductivity,T the temperature, and the comma stands for differentiation
with respect to space variables. Cattaneo’s relation is the simplest non-steady extension
of Fourier’s law qi = −λT,i . However, to recover the Guyer–Krumhansl relation, one
needed to introduce either extra non-local terms [3, 5] or a supplementary variable [4]—for
instance, the flux of the heat flux,Qij , which is a second-order symmetric tensor. From the
kinetic theory point of view, the internal energyu and the heat fluxqi are identified as

u = 1

2

∫
mfC2 dc qi =

∫
mC2Ci dc (2)

whereCi is the relative velocity of molecules with respect to their barycentric velocity,f

is the distribution function andm is the mass of the molecules.
The extra variable, namely the flux of the heat fluxQij , is defined by

Qij =
∫
mC2CiCj dc (Qij = Qji). (3)

From now on, we leave the microscopical description, and will focus solely on
macroscopic aspects. The present paper is an extension of work presented in [3]; it will
be organized as follows. In section 2 we establish the basic evolution and constitutive
equations governing the behaviour of the three basic variables, namely the temperature,
heat flux, and flux of the heat flux. These equations are not free to take any possible form,
as they have to comply with the laws of continuum thermodynamics. Restrictions imposed
by the second law of thermodynamics are derived. In particular, an explicit expression for
the internal energy as a function of the various variablesT , qi , andQij is established. In
section 3 the characteristic velocities of propagation are determined, with special emphasis
on media whose unperturbed temperature is uniform. Comparisons with experimental data
are presented in section 4, while final comments are made in section 5.

2. The governing model

Although most of the contents of this section can be found in [3], we recall them briefly for
the sake of completeness. The basic variables areu (the internal energy per unit volume)
or—preferably—the temperatureT which is directly accessible to experiments,qi (the flux
of the heat), andQij (the flux of the heat flux). Moreover, the symmetric tensorQij will
be separated into a deviatoricQ〈ij〉 and a bulk partQ:

Qij = Q〈ij〉 +Qδij
(
Q = 1

3
Qkk

)
.

For the sake of generality, and in analogy with fluid mechanics where the deviatoric
and bulk parts of the stress tensor are considered as independent variables, we shall from
now on also takeQ〈ij〉 andQ as independent variables.

The set of basic variablesu, qi , Q〈ij〉, Q is assumed to satisfy the following evolution
equations:

∂tu = −qi,i (4)
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∂tqi = −LQ〈ij〉,j −MQ,i + σqi (5)

∂tQ〈ij〉 = σQ〈ij〉 (6)

∂tQ = σQ (7)

where the convention of summation over repeated indices has been used. The quantitiesσ
q

i ,
σ
Q
ij , andσQ are the source terms in the evolution equations forqi , Q〈ij〉, andQ respectively;

it is assumed that there is no source of energy in (4). It is clear from (5) thatQ〈ij〉 andQ
are indeed related to the flux of the heat flux, the coefficientsL andM being introduced
for the sake of generality. There is no flux term present in (6) and (7), asQ〈ij〉 andQ are
considered as internal variables whose behaviour is only influenced by internal sources and
not by effects exerted through the boundary. This explains why (6) and (7) do not contain
a divergence term expressing the flux through the surface of the body. To close the set
of equations, one needs constitutive relations expressingu, σqi , σQ〈ij〉, andσQ in terms of
the basic variablesT , qi , Q〈ij〉, andQ; to take into account non-locality in space, it is in
addition supposed that the unknown functions may also depend on the gradients ofT , qi ,
Q〈ij〉, andQ. At the lowest order of approximation inqi , Q〈ij〉, Q, T,i , and the gradients
of the fluxes, the source termsσqi , σQij , andσQ take the forms

σ
q

i = −a1qi − a2T,i (8)

σ
Q
〈ij〉 = −A1Q〈ij〉 − A2q

sym

〈ij〉 (9)

σQ = −B1Q− B2qk,k (10)

wherein all of the coefficients are allowed to depend on the temperature;q
sym

〈ij〉 stands for the
symmetric part of the deviator ofqi,j . An explicit expression for the constitutive equation
for u will be specified later on. After substitution of (8)–(10) in the evolution equations
(5)–(7), one is led to

τ1 ∂tqi = βλT 2Q〈ij〉,j + β ′λT 2Q,i − qi − λT,i (11)

τ2 ∂tQ〈ij〉 = −Q〈ij〉 − ηqsym〈ij〉 (12)

τ3 ∂tQ = −Q− ζqi,i (13)

wherein we have put

1

a1
= τ1

a2

a1
= λ − L

a1
= βλT 2 −M

a1
= β ′λT 2 (14)

1

A1
= τ2

A2

A1
= η 1

B1
= τ1

B2

B1
= ζ. (15)

It is instructive to examine the particular case whereτ2 = τ3 = 0. After substitution of
Q〈ij〉 andQ derived from (12) and (13) in (11), one obtains

τ1 ∂tqi + λT,i + qi = −λT 2

[
1

2
βηqi,jj +

(
1

6
βη + β ′ζ

)
qj,ji

]
(16)

when it is assumed thatη andζ are constant.
With the following identifications:

τ1 = τR 1

2
λβηT 2 = −1

5
τRτNC

2
s λβ ′ζT 2 = −1

3
τRτNC

2
s (17)
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whereCs is the Debye phonon velocity, i.e. the sound velocity, andτN and τR are the
relaxation times for phonon collisions which are respectively momentum-preserving (τN )
and resistive (τR), i.e. non-momentum-conserving, expression (16) can be written as

τR ∂tqi + λT,i + qi = C2
s

5
τRτN(qi,jj + 2qj,ji). (18)

This is simply the Guyer–Krumhansl relation [1] which is often employed to describe heat
transport at low temperature in non-metallic solids. It should however be observed that
like Fourier’s law, the Guyer–Krumhansl equation predicts that temperature signals will
propagate at infinite velocity, owing to the vanishing of the relaxation timesτ2 andτ3 (see
[2–4]).

Let us now go back to our model whose basic relations are (4) and (11)–(13). They
involve eight parameters, namelyλ, β, β ′, η, ζ, τ1, τ2, τ3 which are generally temperature
dependent. Interesting information about the sign of these coefficients and relations between
them is provided by the second law of thermodynamics, stating that the entropy production
σ s is a positive-definite quantity; the latter quantity is defined through the balance equation
for the entropy, written in the form

σ s = ∂t s + J si,i > 0 (19)

whereins is the entropy per unit volume andJ si the flux of the entropy.
Equations (4) and (11)–(13) coincide formally with (6) and (17)–(19) of [3]; as a

consequence, the thermodynamical restrictions imposed by (19) follow directly from those
obtained in [3], and will therefore only be stated without proof.

However, at this point one remark is in order. In our previous work [3], we have
neglected third-order terms in the expression for the entropy productionσ s . This was
justified as the main objective of [3] was to study linear wave propagation. In a more
general non-linear analysis, one should include in relation (28) of [3] the sum of two
additional (third-order) terms, namely

dβ

dT
Q〈ij〉qjT,i + dβ ′

dT
QqiT,i . (20)

The coefficientsβ andβ ′ are those appearing in the expression for the generalized entropy
flux J si given by

J si = T −1qi + βQ〈ij〉qj + β ′Qqi. (21)

It is easily checked that positiveness of the entropy productionσ s requires that the above
additional terms (20) must vanish identically, from which it follows thatβ andβ ′ should
be taken as constants. It is then verified that by taking into account the above evolution
equations (4) and (11)–(13), the entropy production can be written as

σ s = 1

λ
qiqi − β

η
TQ〈ij〉Q〈ij〉 − β

ζ
TQ2 > 0 (22)

and, from the positiveness ofσ s , it follows that

λ > 0 β/η < 0 β ′/ζ < 0. (23)

In view of [3], the corresponding Gibbs equation takes the form

df = −s dT + τ1

λT 2
qi dqi − β

η
T τ2Q〈ij〉 dQ〈ij〉 − β

′

ζ
T τ3Q dQ (24)

wheref is the Helmholtz free energy.
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By expandingf around the local equilibrium, one obtains [3]

f = feq(T )+ 1

2

τ1

λT 2
qiqi − 1

2
β
τ2T

η
Q〈ij〉Q〈ij〉 − 1

2
β ′
τ3T

ζ
Q2. (25)

Imposing the constraint thatf is a minimum at (the local) equilibrium, and making use
of (23), one recovers the classical result of extended thermodynamics [4]: that the relaxation
times are positive, i.e.

τ1 > 0 τ2 > 0 τ3 > 0. (26)

In view of likely future developments, it is important to derive the expressions for the
entropy and internal energy. The integrability condition for (24) leads to

s = seq − 1

2

d

dT

(
τ1

λT

)
qiqi + 1

2
β

d

dT

(
τ2T

η

)
Q〈ij〉Q〈ij〉 + 1

2
β ′

d

dT

(
τ3T

ζ

)
Q2 (27)

u = ueq − 1

2
T 2 d

dT

(
τ1

λT 2

)
qiqi + 1

2
T 2β

d

dT

(
τ2

η

)
Q〈ij〉Q〈ij〉 + 1

2
T 2β ′

d

dT

(
τ3

ζ

)
Q2 (28)

whereseq andueq are respectively the entropy and the internal energy at equilibrium, which
satisfy the Gibbs relation

T
d

dT
(seq) = d

dT
(ueq) = ceq > 0 (29)

whereceq denotes the heat capacity at equilibrium.
At this stage of the analysis, it is convenient to introduce some simplifying hypotheses.

It is assumed that the quantitiesτ2, η, τ3, andζ appearing in the evolution equations (12)
and (13) forQ〈ij〉 andQ remain constant. This can be justified on the basis of the property
thatQ〈ij〉 andQ are of higher order than the other variablesu andqi , as is evident from
the kinetic definitions (2) and (3). As a direct consequence,u will only depend onT and
qi and, according to (28), one has

u = ueq + a(T )qiqi (30)

with

a(T ) = −1

2
T 2 d

dT

(
τ1

λT 2

)
. (31)

To summarize, we have proposed a model for heat transport in undeformable solids
whose state variables areT , qi , Q〈ij〉, andQ. The evolution equations forT and qi are
given by (4) and (11) respectively, and these relations contain several coefficients likea,
τ1, and λ which are temperature dependent. In contrast, the quantitiesτ2, η, τ3, and ζ
appearing in the evolution equations (12) and (13) forQ〈ij〉 andQ are assumed to remain
constant.

3. Heat propagation velocity

We now determine the speed of propagation of heat waves in a rigid crystal on the basis of the
model described by (4) and (11)–(13). Let us consider a smooth surface6 whose equation
is ϕ(xi, t) = 0, propagating through the body; it is assumed that across6 the quantities
T , qi , Q〈ij〉, andQ are continuous, but discontinuities between their first derivatives are
permitted. As is usual [6], we introduce the normal wave speedv and the unit normal
vectorni to 6 by the following formulae:

v := ∂tϕ

|ϕ,i | ni := ϕ,i

|ϕ,i | (32)
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and define the jump of the first derivatives across6 by

δ :=
(
∂

∂ϕ

)
ϕ=0+
−
(
∂

∂ϕ

)
ϕ=0−

. (33)

On making the standard transformation [6]

∂t →−vδ ∂xi → niδ (34)

the system of equations (4), (11)–(13) provides the following homogeneous algebraic system
for the discontinuities, after use is made of (30):

vuT δT + 2vaqi δqi − ni δqi = 0 (35)

vτ1 δqi = −βλT 2nj δQ〈ij〉 − β ′λT 2ni δQ+ λni δT (36)

vτ2 δQ〈ij〉 = η
[

1

2
(nj δqi + ni δqj )− 1

3
nk δqk δij

]
(37)

vτ3 δQ = ζni δqi . (38)

When v is different from zero, the linear set (35)–(38) has non-trivial solutions on
condition that the following characteristic polynomial is satisfied:

P(v) := uT v2+ 2
λ

τ1
aqnv − λ

τ1
[1+ γ T 2uT ] = 0. (39)

qn stands forqini while γ is a positive constant given by

γ = −
(

2

3

βη

τ2
+ β

′ζ
τ3

)
> 0. (40)

Equation (39) admits real solutions if and only if(
λ

τ1
aqn

)2

+ λ

τ1
(1+ γ T 2uT )uT > 0

i.e. for

uT > 0. (41)

Using expression (30), inequality (41) can be written as

ceq + da

dT
q2 > 0. (42)

This means that in the case where(da/dT ) < 0 there exists an upper bound on|q| given
by

|q| < qcrit =
√
− ceq

da/dT
. (43)

The slopes of the characteristic lines, i.e. the characteristic velocities obtained from
(39), will be denoted asv+(T , q) and v−(T , q). At equilibrium, for whichT is uniform
and equal toTeq and where in additionqi = Q〈ij〉 = Q = 0, the velocity of the propagation
is simply given by

v2
eq =

λ

τ1ceq
[1+ γ T 2ceq ]. (44)

By using the identification given as (17), it is possible to express (44) in terms of the
relaxation timesτR andτN of the resistive and normal phonon–phonon collisions; it is found
that

v2
eq =

λ

ceqτR
+ 1

3
τN

(
4

5τ2
+ 1

τ3

)
C2
s . (45)
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At temperatures sufficiently low to make the frequency of the resistive collisions very
small (1/τR → 0), the wave propagation remains finite, and is given by

v2
eq =

1

3
τN

(
4

5τ2
+ 1

τ3

)
C2
s . (46)

It is interesting to observe that for the same range of application (1/τR → 0), the
Coleman–Newman model [7] would predict a vanishing velocity of propagation, in contra-
diction with experiments.

For the limit of a high frequency of phonon–phonon collisions with momentum con-
servation (1/τN →∞), equation (45) simplifies to

v2
eq =

λ

ceqτR
. (47)

Expressing the heat conductivity as

λ = 1

3
C2
s ceqτR (48)

which is a relation widely used in phonon hydrodynamics, one recovers the well known
expression for the second sound velocity

v2
eq = C2

s /3. (49)

Although most of the experiments on second sound in solids at low temperature were
performed on samples in equilibrium states, interesting features would arise on considering
heat pulses or high-frequency thermal waves in non-equilibrium states.

For simplicity, we assume that the heat propagation is properly one dimensional. In the
1-D problem the real rootsv+ andv− of the characteristic polynomial (39) are given by

v± = − aλ

uT τ1
q ±
√
1

uT
(50)

where1 stands for

1 =
(
λ

τ1
aq

)2

+ λuT
τ1
(1+ γ T 2uT ). (51)

Let us introduce the following notation:

vc =
√

λ

uT τ1
φ = vcaq. (52)

The velocityvc is generally a function ofT andq and should not be confused withveq , the
velocity of propagation in an equilibrium state given by (44).

The solutionsv± now take the form

v+ = vc
[
−φ +

√
1+ φ2+ γ T 2uT

]
(53)

v− = vc
[
−φ −

√
1+ φ2+ γ T 2uT

]
. (54)

It is worth noticing that ifq > 0, v+ is the velocity of propagation in the direction of
q, while v− is the velocity of propagation in the opposite direction. Whenq < 0 we are
faced with the opposite situation.

It is a simple matter to check that the difference1v between the velocity of propagation
in the direction of the heat flux and the velocity in the opposite direction can be written as

1v = −2vcφ = −2
λ

uT τ1
a|q|. (55)
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From (55) it is clear that the sign of1v depends only of the sign ofa. Provided that
a is positive, the difference1v is smaller than zero, indicating that a signal travelling in
the direction of the heat flux will move more slowly than in the opposite direction. The
propertya > 0 has been confirmed by Coleman and Newman [7], who based their analysis
on a non-linear version of the Cattaneo equation, and by phonon hydrodynamics [8] where
it is a proved that for a phonon gas ind dimensions, one finds thata is proportional
to (d + 2)(τR/2ρλuT T 3) where ρ is the mass density. For all of these reasons, it is
henceforth admitted thata is a non-negative quantity. As far as we are aware, experimental
measurements of1v have not been performed yet.

The same result (55) was still obtained by Coleman and Newman; this is not surprising
because the difference of speeds (55) depends only ona and not onγ , which is typical of
the non-locality introduced in our model.

4. Comparison with experimental results

Experiments on second-sound propagation in high-purity crystals at low temperature
have been performed by perturbing systems at uniform temperature. In that respect, to
compare our theoretical results with experimental observations, we need only the simplified
mathematical expressions derived in the particular case of equilibrium. Nevertheless, these
results provide interesting information about the values of the coefficientsa(T ) and γ .
Measurements have been carried out on NaF and Bi samples [9, 10]. It is found that the
measured speed of propagation as a function of temperature is well fitted by an empirical
law of the form

v−2
eq = A+ BT n (56)

whereA, B, andn are constants. For NaF, some values ofA, B, andn giving a good fit
are

A = 9.09× 10−12 B = 2.22× 10−15 n = 3.1 (57)

when the velocities are measured in centimetres per second and the temperature in degrees
Kelvin; for Bi, the following values have been obtained:

A = 9.07× 10−11 B = 7.58× 10−13 n = 3.75. (58)

The temperature ranges in which the heat pulse propagations have been observed are
10 K< Teq < 18.5 K (for NaF) and 1.4 K < Teq < 4 K (for Bi).

An important relevant quantity is the heat capacityceq which varies withT according
to

ceq = εT 3. (59)

The constantε depends on the nature of the crystal: for NaF,ε = 23 erg cm−3 K−4 [11],
and for Bi, ε = 550 erg cm−3 K−4 [12].

Our objective is to determine the values of the parametersa(T ) andγ for the crystals
of both NaF and Bi from the experimental values ofA, B, n, andε. After identification of
(44) and (56) forveq , one obtains

τ1

λT 2
= A+ BT n

εT 5
+ γ (A+ BT n). (60)

From the definition (31) ofa, it is easily checked that

a = 5− n
2ε

BT n−4+ 5A

2ε
T −4− 1

2
nγBT n+1. (61)
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By setting γ = 0, one recovers the result of Coleman and Newman [7]. A further
differentiation of (61) with respect to temperature yields

da

dT
= −20A+ (n− 5)(n− 4)BT n

2εT 5
− 1

2
n(n+ 1)γBT n. (62)

Figure 1. a(T ) versus temperature. Solid line: Bi; dotted line: NaF.

SinceA, B, andγ are positive, and since the data for NaF and Bi yieldn < 4, it follows
from (62) that(da/dT ) < 0, which demonstrates the property thata is a decreasing function
of T . But since—as was argued in the previous section—a is a non-negative quantity, there
exists a maximum temperatureT∗ (see figure 1) beyond which second sound will not be
observed.

This property has indeed received experimental confirmation: for NaF,T∗ = 18.5 K,
and for Bi,T∗ = 4 K.

Substituting these maximum values forT in (61) leads to the following expression for
the constantγ :

γ = (5− n)BT n∗ + 5A

nεBT n+5∗
(63)

and it is found that

γ = 2.7928× 10−8 (NaF) γ = 2.615 67× 10−6 (Bi). (64)

The result da/dT < 0 is also of interest because it allows one to determine the critical
valueqcrit above which the model is not applicable. Indeed from (43), (59), and (62), one
has

qcrit =
√

2εT 4/
√

20A+ (n− 5)(n− 4)BT n + n(n+ 1)εγBT n+5. (65)

In figure 2 and figure 3 we have plotted the critical valuesqcrit for NaF and Bi
respectively. One observes that the presence of non-local effects (γ 6= 0) reduces the
value of the critical bound with respect to that for local theory (γ = 0). This shift is the
price paid for the improvement of the model.



3126 A Valenti et al

Figure 2. The critical heat flux (qcrit ) versus temperature for NaF. Solid line:γ 6= 0 (non-local
theory); dotted line:γ = 0 (local theory).

Figure 3. The critical heat flux (qcrit ) versus temperature for Bi. Solid line:γ 6= 0 (non-local
theory); dotted line:γ = 0 (local theory).

5. Final remarks

Our purpose was to propose a rather general thermodynamic model of propagation of heat
pulses in non-metallic solids at low temperature. The model is non-linear, as the relevant
parameters like heat capacity, heat conductivity, and relaxation times are allowed to be
temperature dependent. It complements earlier work [3] by the same authors wherein
only the linear aspects of the problem were investigated and where no comparison with
experimental data was achieved. Our work also generalizes a paper by Coleman and
Newman [7], who based their analysis on a non-linear Cattaneo relation. However, it is well
known (see, e.g., [13]) that Cattaneo’s equation is too simple to describe the complexity
of energy transport in dielectric crystals. A better modelling is provided by the Guyer and
Krumhansl formalism [1], but the latter has the inconvenience of not being compatible with
hyperbolicity. In other words, it predicts that temperature signals propagate with an infinite
velocity at high frequencies.

The model developed in this paper presents two improvements with respect to that of
Guyer and Krumhansl. Firstly, it allows for temperature-dependent thermal coefficients;
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secondly, it is compatible with the hyperbolicity requirement. The price to be paid is a
more complicated description with an additional variableQij , which is identified as the flux
of the heat fluxqi . A direct consequence is that the internal energy will depend onqi and
the components ofQij in addition to the temperature. Under some simplifying assumptions,
the internal energy is found to be quadratic in the heat flux:

u = ueq(T )+ a(T )q2. (66)

Heat pulse experiments on high-purity dielectric crystals such as NaF and Bi at very
low temperature have allowed us to determine the dependence ofa on temperature. Another
interesting result from the present analysis is that it provides an expression for the velocity
of propagation of weak discontinuities. In media in which the unperturbed temperature field
was uniform, it was found that

v2
eq =

λ

τRceq
[1+ γ T 2ceq ] (67)

whereinτR was identified as the relaxation time of the resistive phonon–phonon collisions.
In comparison with Coleman and Newman’s model [7], equation (67) contains an extra
contribution proportional toγ ; the latter is given by expression (40), and in the present model
it is a constant quantity related to the various coefficients appearing in the evolution equations
for the fluxes; the value ofγ has been determined from experimental measurements.

It is worth stressing that the extra termγ T 2ceq in expression (67) is certainly not
negligible, as it is of the order of 0.3 for both NaF and Bi, in the temperature range of
interest.
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